Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Year range
2.
Immunity ; 2022.
Article in English | EuropePMC | ID: covidwho-1989998

ABSTRACT

SARS-CoV-2 infection and vaccination generates enormous host response heterogeneity and an age-dependent loss of immune response quality. How the pre-exposure T cell repertoire contributes to this heterogeneity is poorly understood. We combined analysis of SARS-CoV-2-specific CD4+ T cells pre- and post-vaccination with longitudinal T cell receptor tracking. We identified strong pre-exposure T cell variability that correlated with subsequent immune response quality and age. High-quality responses, defined by strong expansion of high-avidity spike-specific T cells, high interleukin 21 production, and specific immunoglobulin G, depended on an intact naïve repertoire and exclusion of pre-existing memory T cells. In the elderly, T cell expansion from both compartments was severely compromised. Our results reveal that an intrinsic defect of the CD4+ T cell repertoire causes the age-dependent decline of immune response quality against SARS-CoV-2 and highlight the need for alternative strategies to induce high-quality T cell responses against newly arising pathogens in the elderly. Graphical Determinants of immune response quality to SARS-CoV-2 remain poorly defined. Saggau et al. examine spike-specific naïve and memory T cells pre- and post-vaccination and track pre-existing memory T cell receptors. They define T cell parameters of high-quality vaccine responses and identify high pre-existing memory and low naïve T cell contributions as predictors of low-quality responses, particularly in the elderly.

3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.10.09.463766

ABSTRACT

Several studies have pointed to retinal involvement in COVID 19 disease, yet many questions remain regarding the ability of SARS CoV 2 to infect and replicate in retinal cells and its effects on the retina. Here we have used human stem cell derived retinal organoids to study retinal infection by the SARS CoV 2 virus. Indeed, SARS CoV 2 can infect and replicate in retinal organoids, as it is shown to infect different retinal lineages, such as retinal ganglion cells and photoreceptors. SARS CoV 2 infection of retinal organoids also induces the expression of several inflammatory genes, such as interleukin 33, a gene associated with acute COVID 19 disease and retinal degeneration. Finally, we show that the use of antibodies to block the ACE2 receptor significantly reduces SARS CoV 2 infection of retinal organoids, indicating that SARS CoV 2 infects retinal cells in an ACE2 dependent manner. These results suggest a retinal involvement in COVID 19 and emphasize the need to monitor retinal pathologies as potential sequelae of long COVID.


Subject(s)
Infections , Retinal Degeneration , Severe Acute Respiratory Syndrome , Retinitis
SELECTION OF CITATIONS
SEARCH DETAIL